
ISO TC184/SC4/WG10 N317
Date: 2000-11-01

ISO TC 184/SC4 DRAFT STANDING DOCUMENT

Technical Committee 184 for Industrial Automation Systems and Integration Subcommittee 4
for Industrial Data

Guidelines for the content of
application modules

Revision 0.7

ISO TC 184/SC4 WG10 Technical Architecture
National Institute of Standards and Technology

Building 220/Room A127
Gaithersburg, Maryland 20899

USA

Contents

1 Scope
2 Normative references
3 Terms, definitions and abbreviations
4 Application module content overview
5 Specification of application module content
Annex A Conformance testing concepts for application modules
Annex B Examples

Foreword

The International Organization for Standardization (ISO) is a worldwide federation of national
standards bodies (ISO member bodies). The work of preparing International Standards is
normally carried out through ISO technical committees. Each member body interested in a
subject for which a technical committee has been established has the right to be represented on
that committee. International organizations, governmental and non-governmental, in liaison with
ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical
Commission (IEC) on all matters of electrotechnical standardization.

This standing document was prepared by Technical Committee ISO/TC 184, Industrial
automation systems and integration, Subcommittee SC4, Industrial data.

ISO/TC 184/SC4 standards are prepared according to guidelines put forth in the following
standing documents:

• Guidelines for the content of application modules;

• Guidelines for application interpreted model development;

• Guidelines for the content of application protocols using application modules;

• Guidelines for the development of abstract test suites;

• ISO/TC 184/SC4 organization handbook;

• Supplementary directives for the drafting and presentation of ISO 10303.

The use of the following guidelines are deprecated due to the new guidelines for application
modules and application protocols using application modules:

• Guidelines for the development and approval of STEP application protocols;

• Guidelines for the development of mapping tables;

• Guidelines for application interpreted construct development.

Introduction

ISO 10303 is an International Standard for the computer-interpretable representation and
exchange of product data. The objective is to provide a neutral mechanism capable of describing
product data throughout the life cycle of a product independent from any particular system. The
nature of this description makes it suitable not only for neutral file exchange, but also as a basis
for implementing and sharing product databases and archiving.

This International Standard is organized as a series of parts, each published separately. The parts
of ISO 10303 fall into one of the following series: description methods, integrated resources,
application interpreted constructs, application modules1, application protocols, abstract test
suites, implementation methods, and conformance testing. The series are described in ISO
10303-1.

The purpose of this standing document is to provide guidelines for the content of ISO 10303
application modules (AMs) that are used as the data specification for ISO 10303 application
protocols (APs).

Application modules are the key component of the modularization of the initial ISO 10303
architecture. The modularization approach extends the application interpreted construct (AIC)
concept of the initial ISO 10303 architecture through inclusion of the relevant portions of the
AP's application reference model. The basis of the approach is understanding and harmonizing
the requirements, both new and those documented in existing APs, grouping the requirements
into reuseable modules, documenting the modules, and using the modules in the development of
an application protocol. With much of the content of the initial ISO 10303 architecture AP now
documented in AMs, the role of the AP is to select and constrain a set of the more generic AMs
to satisfy information requirements in a particular application context.

The development of an application protocol modularization strategy was driven by several
requirements from different sources:

• to reduce the high cost of developing an application protocol;

• to ensure the ability to implement a combination of subsets of multiple APs or to extend
existing APs to meet a business need;

• to ensure the ability to reuse application software developed to support one AP in the
development of an implementation of another AP with the same, or similar, requirements;

• to avoid the duplication and repeated documentation of the same requirements in
different application protocols leading to potentially different solutions for the same
requirements; and

• to ensure the ability to reuse data generated by an implementation of one or more APs by
an implementation of one or more different APs.

The expected audience for this document includes developers of ISO 10303 application modules
and application protocols as well as users of application protocols who are interested in a more
in-depth understanding of the origins of the structure of application protocols.

NOTE - This document is an adaptation of the guidance found in Guidelines for the development and approval of
STEP application protocols, Guidelines for application interpreted model development, Guidelines for the
development of mapping tablesand Guidelines for application interpreted construct development.

1 To be added to ISO 10303-1 as part of the WG10 STEP Modularization PWI responsibilities.

DRAFT STANDING DOCUMENT ISO TC184/SC4/WG10 N317

Guidelines for the content of application modules

1 Scope

This standing document specifies guidelines for the content of ISO 10303 application modules.

The following are within scope of this standing document:

• description of the content of an application module.

The following are outside the scope of this standing document:

• guidelines for the development process for application modules;

• guidelines for the development process for application protocols using application
modules;

• specification of presentation information for the documentation of an ISO 10303
application module;

• detailed guidance on how to select constructs of the ISO 10303 integrated resources that
map to the information requirements of an ISO 10303 application module;

• guidelines for development of mapping specifications for documents other than ISO
10303 application modules;

• guidelines for the use of EXPRESS in information models other than ISO 10303
application modules;

• description of how the application modules are to be used in the documentation of
application protocols.

2 Normative references

The following standards contain provisions which, through reference in this text, constitute
provisions of this standing document. At the time of publication, the editions indicated were
valid. All standards are subject to revision, and parties to agreements based on this standing
document are encouraged to investigate the possibility of applying the most recent editions of the
standards indicated below. Members of the IEC and ISO maintain registers of currently valid
International Standards.

ISO 10303-1, Industrial automation systems and integration — Product data representation and
exchange — Part 1: Overview and fundamental principles.

ISO 10303-11:1994, Industrial automation systems and integration — Product data
representation and exchange — Part 11: Description methods: Language reference manual and
its Amendment 1.

The following documents contain provisions which, through reference in this text, constitute
provisions of this standing document. At the time of adoption, the revisions of the documents
indicated were valid. All documents are subject to revision, and users of this standing document
are encouraged to investigate the possibility of applying the most recent editions of the
documents indicated below.

ISO/TC 184/SC4 N534:1997, Guidelines for application interpreted construct development.

ISO/TC 184/SC4 N535:1997, Guidelines for the development and approval of STEP application
protocols.

ISO/TC 184/SC4 N318:2000, Guidelines for the content of application protocols using
application modules.

ISO/TC 184/SC4 N1029, Guidelines for the development of mapping specifications, 2nd Edition.

ISO/TC 184/SC4 N858, Supplementary directives for the drafting and presentation of ISO
10303, edition 2.

3 Terms, definitions and abbreviations

3.1 Terms defined in ISO 10303-1

For the purpose of this standing document, the following terms defined in ISO 10303-1 apply.

• application reference model (ARM);

• interpretation;

• resource construct;

• unit of functionality (UoF).

3.2 Definitions

For the purposes of this standing document the following definitions apply.

3.2.1
application module (AM)

a reuseable collection of scope statement, information requirements, mappings and module
interpreted model that supports a specific usage of product data across multiple application
contexts.

3.2.2
module interpreted model (MIM)

an information model that uses the common resources necessary to satisfy the information
requirements and constraints of an application reference model, within an application
module.

3.3 Abbreviations

For the purposes of this standing document, the following abbreviations apply.

AIC application interpreted construct

AM application module

ARM application reference model

MIM module interpreted model

UoF unit of functionality

URL universal resource locator

4 Application module content overview

This clause provides an overview of the contents of an application module. The contents for an
application module are given in figure 1 and are explained in the subsequent subclauses. The
three major components of an AM are: 1) the scope and functional requirements; 2) the
application reference model as a representation of the application domain information
requirements; and 3) the module interpreted model that specifies the required use of the common
resources. Additionally, each application has an associated module validation results document,
test cases or abstract test suite.

Figure 1 - Contents of an application module

Foreword
Introduction
1 Scope
2 Normative references
3 Definitions and abbreviations
4 Information requirements
4.1 Units of functionality
4.2 Required AM ARMs
4.3 ARM type definitions
4.4 ARM entity definitions
4.5 ARM rule definitions
4.6 ARM function definitions
5 Module interpreted model
5.1 Mapping specification
5.2 MIM EXPRESS short listing

Annexes

A AM MIM short names
B Information object registration
C ARM EXPRESS-G
D MIM EXPRESS-G
E AM ARM and MIM EXPRESS listings
F Concepts required from other AMs
G Application module implementation and usage guide
H Technical discussions
I Bibliography
Index

4.1 The foreword and introduction

The Foreword for the AM shall contain the text specified in Figure 2 replacing the items in
brackets as appropriate for the AM.

ISO (the International Organization for Standardization) is a worldwide
federation of national standards bodies (ISO member bodies). The work of
preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which a
technical committee has been established has the right to be represented on
that committee. International organizations, governmental and non-
governmental, in liaison with ISO, also take part in the work. ISO
collaborates closely with the International Electrotechnical Commission
(IEC) on all matters of electrotechnical standardization.

The main task of technical committees is to prepare International Standards.
Draft International Standards adopted by the technical committees are
circulated to the member bodies for voting. Publication as an International
Standard requires approval by at least 75% of the member bodies casting a
vote.

In other circumstances, particularly when there is an urgent market
requirement for such documents, a technical committee may decide to
publish other types of normative documents:

• an ISO Publicly Available Specification (ISO/PAS) represents an
agreement between technical experts in an ISO working group and is
accepted for publication if it is approved by more than 50% of the
members of the parent committee casting a vote;

• an ISO Technical Specification (ISO/TS) represents an agreement
between the members of a technical committee and is accepted for
publication if it is approved for publication if it is approved by 2/3 of
the members of the committee casting a vote.

An ISO/PAS or ISO/TS is reviewed every three years with a view to
deciding whether it can be transformed into an International Standard

ISO/TS 10303-28 was prepared by Technical Committee 184, Industrial
automation systems and integration, Subcommittee SC4, Industrial data.

This International Standard is organized as a series of parts, each published
separately. The parts of ISO 10303 fall into one of the following series:
description methods, integrated resources, application interpreted constructs,
application modules, application protocols, abstract test suites,
implementation methods, and conformance testing. The series are described
in ISO 10303-11. A complete list of parts of ISO 10303 is available from the
Internet:

 <http://www.nist.gov/sc4/editing/step/titles/>.

This part of ISO 10303 is a member of the application modules series.

Annexes <normative annex list> form an integral part of this part of ISO
10303. Annexes <informative annex list> are for information only.

1 - A future edition of ISO 10303-1 will describe the application modules series.

Figure 2 - The boilerplate text for the Foreword of an application module.

The Introduction for the AM shall provide an overview of the technical content. The Introduction
shall explain the relationships between the AMs that are used by the AM being defined and shall
begin with the text specified in Figure 3.

ISO 10303 is an International Standard for the computer-interpretable
representation of product information and for the exchange of product data.
The objective is to provide a neutral mechanism capable of describing
products throughout their life cycle. This mechanism is suitable not only for
neutral file exchange, but also as a basis for implementing and sharing
product databases, and as a basis for archiving.

This application module <application module-specific introductory text>.

Figure 3 - The boilerplate text for the Introduction of an application module.

4.2 The scope

Clause 1 of an AM shall define the domain of the AM and summarize the fundamental concepts
and assumptions of the scope, the functionality of the AM, and the types of information that are
accommodated by the AM. A description of the functionality and information that are
specifically outside the scope of the application module shall be defined to clarify the domain of
the AM.

4.3 The normative references

All normative references shall be listed in clause 2 of an AM. The minimal required set of

normative references are:

ISO 10303-1 Industrial automation systems and integration - Product data representation and
exchange - Part 1: Overview and fundamental principles.

ISO 10303-11 Industrial automation systems and integration - Product data representation and
exchange - Part 11: Description methods: The EXPRESS language reference manual.

ISO/IEC 8824-1:1995, Information Technology - Open Systems Interconnection - Abstract
Syntax Notation One (ASN.1) - Part 1: Specification of Basic Notation.

The normative references shall include the application modules directly used by the application
module being defined.

4.4 The definitions and abbreviations

Clause 3 of an AM shall include definitions of all concepts necessary to understand the
Introduction, Scope, and Information requirements clauses. This clause may include concepts
that are defined further in the Information requirements clause. The concept definitions provided
in this clause shall be consistent with the complete definitions provided in the Information
requirements clause. This clause shall not include the definitions of objects defined in the
application reference model or the module interpreted model. This clause shall list the terms
defined in other ISO standards, including AMs, that are necessary for understanding the AM.

4.5 The information requirements

Clause 4 of an AM shall describe the functionality and information requirements of the AM. The
first paragraphs of this clause provide a high level description of the information requirements
that are supported by the AM and a summary of the structure used to partition the information
requirements.

This clause may include a description of the types of information supported by the AM, any
restrictions on the information supported, and the supported uses of the defined information.

This clause shall provide all additional information on the fundamental concepts and
assumptions (initially introduced in clauses 1 and 3) which is necessary for complete
understanding of the information requirements and the scope boundaries. This clause shall
include a description the fundamental concepts and UoFs of the AM and any prerequisite AMs
used by the AM.

This clause shall include subclauses for units of functionality, referenced AM ARMs and ARM
type definitions, ARM entity definitions, ARM rule definitions, and ARM function definitions as
required. The ARM shall be defined using the EXPRESS language and is constructed from AM
specific declarations and other AM ARMs referenced using the EXPRESS interface specification
(USE FROM) defined in ISO 10303-11.

4.5.1 The units of functionality

If the AM contains UoFs, the first subclause of clause 4 of an AM shall specify a list of the UoFs
defined in or used by the AM and the definition of each UoF defined in the AM.

A UoF is a grouping of data constructs which is important in the application module. A UoF
specifies the set of application objects that constitute one or more concepts of the application
reference model. UoFs are a mechanism for modularizing the information requirements into
primary concepts. The UoFs are used to organize and summarize the functionality of the ARM.

Each UoF definition shall include the scope of the UoF, a description of the function(s) that the
grouping of data is intended to support, and a list of the application objects that are included in
the UoF.

For a UoF defined in another application module the UoF description in the using AM shall list
the application objects referenced by objects in the using AM.

NOTE - The intent is for application modules to define one UoF and possibly make use of UoFs defined within
other application modules.

4.5.2 The required application module ARMs

The next subclause of clause 4 of an AM shall specify the application reference models defined
in other application modules that are required by the AM. This specification takes the form of
documented EXPRESS USE FROM constructs and shall use the ARM from the required AMs in
its entirety.

As part of the migration path to a modularized ISO 10303 standard, consensus may be reached
on the scope of an AM under development which requires other AMs that do not yet exist. In this
case the AM under development may create an informative ARM defining the concepts it
requires and document that ARM in annex F. Requirements on an interpretation of that ARM
may also be specified in annex F.

4.5.3 The ARM type definitions

If the AM ARM declares defined types, the next subclause of clause 4 of an AM shall specify the
defined types necessary for the description of the application objects defined in the AM.

4.5.4 The application objects as ARM entity definitions

The next subclause of clause 4 of an AM shall include the definitions for all application objects
and attributes declared in the AM. An application object is an atomic element of an application
reference model that defines a unique application concept and contains attributes specifying the
data elements of the object. Application objects are documented in the ARM by EXPRESS
ENTITY definitions.

Application objects documented as EXPRESS entities contain the definitions of simple
attributes, derived attributes, relationship attributes and relationship constraints. Simple attributes
are those which evaluate to a simple data type. Relationship attributes are those which establish a
relationship with another application object. Relationship constraints are EXPRESS INVERSE
attributes which constrain the cardinality of a relationship between two application objects.

4.5.5 The ARM rule definitions

If the AM ARM declares rules, the next subclause of clause 4 of an AM shall specify the

necessary rules constraining the application objects.

NOTE: Global rules should be examined carefully to avoid unnecessarily preventing the reuse of the AM.

4.5.6 The ARM function definitions

If the AM ARM declares functions, the next subclause of clause 4 of an AM shall specify the
necessary functions used by the ARM rules and ARM entity definitions.

4.6 The module interpreted model

Clause 5 of an AM shall specify the module interpreted model. The MIM shall be defined using
the EXPRESS language and is constructed from the resource constructs (including the MIM
schemas of other AMs) using the EXPRESS interface specification (USE FROM) defined in ISO
10303-11. The required resource constructs may be further refined in the AM. The need for
refinement of the resource constructs arises out of the information requirements of the particular
application module domain.

4.6.1 The mapping specification

Clause 5.1 of an AM shall specify the mapping specification. The mapping specification
documents the correspondence between the information requirements and the constructs of the
MIM. This mapping specification shall specify an unambiguous mapping between the
application objects and their attributes defined in the information requirements clause and the
constructs of the MIM. The mapping shows how the common resource constructs are used to
meet the information requirements of the application module.

4.6.1.1 The reuse and specialization of mapping specifications

When one AM requires the use of another AM that use includes the mapping specification of the
used AM in the scope of the using AM. This reuse of mapping specifications is the same as the
reuse of the ARM and MIM from a used AM in the scope of the using AM. The using AM may
not contradict the mapping specification in the used AM but may specialize the mapping
specification to meet more specialized requirements defined in the using AM. This specialization
of a mapping specification consists of the following:

• the elimination of one or more possibilities in an OR map;

• the addition of mapping constraints on attribute domain values.

4.6.1.2 The mapping specification for abstract concepts in the ARM

In the case that a generic and abstract concept appears in the ARM of an AM with the
expectation that the concept will be completed in the ARM of a using AM, then a mapping
specification need not be complete for that ARM concept.

Additionally, if a mapping specification is written for a concept, the concept need not appear in
the MIM short form schema. This allows for the concept to be completed in a using ARM where
a complete mapping specification and instantiable and complete MIM short form constructs are
defined. An example of the use of this mechanism might be to address Part 41 management

resource assignment completion.

4.6.2 The MIM short form

Clause 5.2 of an AM shall specify the MIM EXPRESS short listing. The MIM EXPRESS short
listing shall consist of USE FROM statements that select common resource constructs and the
MIM schemas from other AMs, AM specific declarations, and any appropriate modifications to
textual material that applies to constructs interfaced into the MIM schema from the common
resources. The declarations include TYPE declarations, ENTITY declarations that create
subtypes of resource entities, and any necessary RULES, and FUNCTIONS that are required to
satisfy the information requirements. Any declarations of types, entities, rules, and functions
defined in the AM are fully documented in the MIM EXPRESS short listing. Textual
modifications may also be made in the MIM documentation including the following:

• clarification of application specific interpretation of the meaning of a generic entity
definition;

• clarification of application specific interpretation of the meaning of one or more
attributes;

• specification of application specific informal propositions;

• addition of application specific examples and notes.

4.7 The annexes and bibliography

The following annexes appear in an AM.

A MIM short names (normative)

This annex shall contain a correspondence list between the entities used in the MIM and the
short names. This list is derived from the short names specified in the common resources
together with the short names for entities introduced in the AM.

B Information object registration (normative)

This annex shall specify the information object identifiers for the application module. This
shall include identifiers for the AM document, the ARM schema and for the MIM schema.

C ARM EXPRESS-G (informative)

This annex shall contain an EXPRESS-G representation containing at a minimum all types
and entities defined in the ARM. Additional constructs from the ARMs defined in required
AMs may also be contained in order to assist in clarifying the relationships between ARM
concepts. The graphical presentation of the ARM, i.e., EXPRESS-G, aids the understanding
and review of the information requirements and definitions. The ARM diagrams shall be at a
detail level sufficient to present the requirements in a manner that it is understandable to an
application domain expert. This representation shall be documented in accordance with
annex D of ISO 10303-11 and the Supplementary directives for the drafting and presentation
of ISO 10303.

D MIM EXPRESS-G (informative)

This annex shall contain the EXPRESS-G representation of all interface specifications and all
types and entities defined in the MIM. This representation shall be documented in accordance
with annex D of ISO 10303-11 and the Supplementary directives for the drafting and
presentation of ISO 10303.

E MIM and ARM EXPRESS listing (informative)

This annex shall contain a reference to a URL with the entire MIM and ARM EXPRESS
short listing without comments.

F Concepts required from other AMs (optional and informative)

This annex, if provided, contains the concepts required from other AMs that do not yet exist.
These include one or more annotated informative ARM schema declaring constructs required
by the ARM schema of the AM being defined. Constraints on the interpretation of the
informative ARM schema may also be defined. These define the concepts required for the
successful use of the AM without defining them completely and without specifying where
they will be standardized.

G Application module implementation and usage guide (optional and informative)

This annex, if provided, contains informative guidance on implementing and using the AM.
This annex provides guidance to two different audiences, i.e., implementors and end users of
AM compliant implementations. Example information descriptions that are supported by the
AM and the corresponding AM exchange files may be included in this annex. If exchange
files are included in this annex, the annex should explain the primary data structures and the
logic and meaning of the values used in the exchange file.

H Technical discussions (optional and informative)

This annex, if provided, contains a summary of relevant technical discussions and the
resolution of issues raised during the development of the AM. This annex provides
background information for potential users of the AM and for developers of similar or related
AMs. The material given should not cast doubt or self justify. Only material which supports
the normative text shall be given.

Bibliography (informative)

This lists all informative references relevant to the AM.

5 Specification of application module content

This clause specifies the required content for an AM. Unless overridden by this standing
document, the presentation of the various elements of an application module is governed by the
relevant ISO directives and SC4 standing documents.

5.1 Scope content

The definition of the scope and information requirements begins with the formulation of a
statement of the application module functional requirements. The detailed scoping and
information requirements definition shall follow from this statement.

The scope and requirements identify the primary concepts and relationships to be supported by
the AM. The AM's scope and information requirements shall be carefully defined and
documented. The AM scope statement shall include a summary of the data that are within scope.
This scope statement shall define the following characteristics of the scope of the application
module as appropriate given the AM domain:

• types of information;

• types of data;

• life cycle stages supported;

• uses of the information, e.g., functional or application processes, supported;

• discipline views supported.

For the purposes of clarification, an AM exclusion from scope statement shall appear that
includes the data outside the scope of the AM. The same characteristics used to define the scope
may be included as appropriate.

5.1.1 Scope refinement

Scope refinement is the process of taking a single application module and breaking it down into
two or more application modules to address exactly the original scope. A revision is then made
to the original AM such that it uses the new AMs to meet its requirements. The refinement of the
scope of an AM includes identifying and separating concepts to maximize reuse of the AMs and
identifying mandatory relationships with other AM's. Each AM should define a unique and
distinct set of Application Objects relating only to the concept being represented. It should
contain no Application Objects that are defined by another AM, that is representing another
concept. Vocabulary will typically change from concept to concept. The description of the AM
should not contain sentences that move from one concept to another. The use of conjunctions,
such as 'and', in either the name or description of an AM is an indication that there is more than
one concept being represented. Unless it can be demonstrated that the concepts being represented
are inseparable in all applications, serious consideration should be given to separating those
concepts and defining an AM for each.

5.2 Information requirements specification

Based on the detailed scope and functional requirements that have been defined, the information
domain of the AM is defined in the application reference model (ARM). The ARM shall be
documented using EXPRESS. The ARM shall describe fully the data needs of the application
module, using the potentially harmonized terminology of the application domain(s).

The ARM documents the required data and relationships of the AM. The information

requirements shall be modelled only to the level necessary to convey the information that is
important from the application experts' point of view. An ARM shall be sufficiently detailed so
that the selection and interpretation of the common resources can be done accurately.

A mechanism for modularizing the scope of an industry domain into manageable constructs is to
define units of functionality. A UoF is a collection of application objects and assertions that
conveys one or more well-defined concepts within the context of an ARM. A UoF may result in
one or more AM's and an AM may include or use more than one UoF. However, to realize the
most reusability of an application module the scope of application modules that define multiple
UoFs should be reviewed for potential refinement. A UoF usually supports an application
function or process. UoFs are used to organize and summarize the functionality of the ARM. For
example, if a geometric modelling application has a requirement for wireframe geometry, then a
UoF may be defined which provides a grouping of those application objects in the ARM which
are intended to support geometric modelling using wireframe geometry.

In a harmonized suite of application modules, two or more AMs shall not contain equivalent
UoFs or common information requirements. When two or more AMs have equivalent UoFs or
common information requirements, a new AM shall be created, the same interpretation of the
integrated resources shall be used in the new AM, and the new AM shall be used by the AM's
with common requirements without changing the scope of the existing AM.

5.2.1 Information requirements documentation

Clause 4 of the AM shall include a high level description of the information requirements, a
summary of the structure used to define the partition of the information requirements defined by
the AM, and subclauses for specifying UoFs, referenced AMs and the AM ARM components.
The description of the information requirements shall be sufficient to prepare the reader for the
material in the subclauses.

The information requirements shall be defined using EXPRESS annotated with prose. The
referenced AMs and the ARM components including application objects, relationship attributes
and constraints shall be defined as a single documented EXPRESS schema. The elements listed
within each subclause shall be ordered alphabetically. In a harmonized suite of application
modules, the UoFs, ARM schema, ARM types, application objects, ARM rules and ARM
functions shall have unique names, i.e., no application elements shall share the same name across
the complete suite of AMs.

The documentation for an AM's ARM and information requirements includes the following
components as required. The clause referenced listed assume at least one of each component is
included. Should there be no ARM types, functions or rules these clauses shall be omitted in the
AM and the clause numbering shall change accordingly.

1. units of functionality

This subclause provides a complete list of the UoFs defined in the AM and defined in any other
AM used directly or indirectly by the AM. This is the only place in an application module where
the full domain of the application module and all of its prerequisite application modules is found.
For UoFs defined in the AM, a description of the functions that each UoF supports, and the list
of application objects included in the UoF is specified. For UoFs used from another AM, the

name of the AM in which which the UoF is defined shall be included in the list. Application
objects defined in another AM specifically referenced by application objects defined in the AM
shall be listed under the description of the UoF in the other AM in which they are defined.

2. referenced application module ARMs

The referenced application module ARMs takes the form of documented EXPRESS USE FROM
constructs. Each AM ARM shall be used in its entirety. Should the AM not use any other AM
this fact shall be stated in this subclause.

3. ARM type definitions

The ARM defined types specification takes the form of documented EXPRESS TYPE
definitions.

4. ARM entity definitions

The application objects are documented as ARM EXPRESS entities. Every EXPRESS entity in
the ARM shall be considered an application object. Each application object which exists in the
ARM shall appear in the mapping specification although it may not be fully mapped.

5. ARM rule definitions

The ARM rules specify the necessary constraints on the application objects. These constraints
are documented in the ARM as EXPRESS RULE definitions.

6. ARM function definitions

The ARM functions specify the necessary functions used by the ARM rules and ARM entity
definitions. These functions are documented as EXPRESS FUNCTION definitions.

5.2.2 EXPRESS ARM documentation

The ARM EXPRESS definitions shall be specified as follows.

• The ARM schema name shall be the name of the AM appended with the suffix "_arm".

• The ARM type definitions shall appear in alphabetical order. Each type shall appear in its
own subclause.

• Each application object shall be stated in the ARM entity definitions and each ARM
entity definition shall represent an application object. Each application object shall appear
in its own subclause.

• Each attribute whose data type is either a base data type or a defined data type which is a
SELECT data type with a select list that does not contain entity types or, recursively,
other SELECT types with select lists that do not contain entity types shall be stated as an
attribute of that entity in the ARM entity definition.

• Each attribute whose data type is an aggregate with a type that is either a base type or a
defined type which is a SELECT data type with a select list that does not contain entity

types or, recursively, other SELECT types with select lists that contain entity types shall
be defined as an attribute in the ARM entity definition, with the cardinality specified in
the definition.

• Each relationship attribute whose data type is an aggregate of either an entity type or a
SELECT type with a select list that contains either entity types or other select types with
select lists that contain entity types shall defined as an attribute in the ARM entity
definition with the cardinality defined by the aggregate bounds.

• Each relationship attribute whose data type is an entity type shall be defined as an
attribute in the ARM entity definition.

• Each relationship attribute whose data type is a SELECT data type with a select list that
contains entity types or other select types with select lists that contain entity types shall
be defined as an attribute of the ARM entity definition.

• Each constraint on the cardinality of a relationship attribute whose data type is an entity
type shall be defined as an INVERSE attribute in the referenced ARM entity definition.

• The ARM rule definitions shall appear in alphabetical order. Each rule shall appear in its
own subclause.

• The ARM function definitions shall appear in alphabetical order. Each function shall
appear in its own subclause.

5.3 The module interpreted model

The MIM documents the interpretation of the the information requirements into the common
resources. The results of that interpretation are:

• a selection of the required application module MIMs to satisfy ARM requirements;

• the selection of the required SC4 common standardized resource constructs to satisfy
ARM requirements;

• additional EXPRESS constructs and constraints needed to satisfy ARM requirements and
to specify the MIM short listing, and;

• the mapping of ARM constructs to the MIM schema constructs.

5.3.1 Selected resource constructs

The result of interpretation is the specification of one or several resource constructs which satisfy
the requirements of the ARM construct, along with any needed constraints.

The integrated resource constructs are designed for generic use by all AMs. In the selection
process, the best entity for an ARM requirement may have attributes that are not supported by
requirements in the ARM. In the cases where the additional attributes have underlying types that
are base types and there is no data to support the instantiation of these attributes, the
recommended values for these attributes may be documented in the "Module implementation and

usage guide" annex of the application module.

5.3.2 MIM short form specification

The MIM is constructed from the common resources, including AMs, through the use of the
EXPRESS USE FROM; this MIM schema is called the short form. The short form consists of
two parts. The first part contains the interface specification that provides the relationship
between the common resources and the MIM. The second part defines the unique MIM
constructs that refine or specialize the usage of the integrated resources. The MIM schema name
shall be the name of the AM appended with the suffix "_mim". The remainder of this subclause
of this standing document expands on the detailed use of EXPRESS in defining an MIM.

The EXPRESS short listing specifies the selection of application module MIMs and constructs
from other common resources through a formal interface specification method. This interface is
accomplished through the EXPRESS USE FROM specification described in clause 11 of ISO
10303-11. The required MIMs from other AMs shall be used in their entirety.

The MIM short listing also specifies all constructs that are new and unique to the MIM, which
may include entities, attributes, type definitions, local and global rules, and functions. Only two
classes of new constructs are allowed in an MIM; those that:

• complete and assign a concept definition; and

• constrain a generic concept.

5.3.3 Concept completion and assignment

In the ISO 10303 integrated resources, there are a number of template structures that have been
used to specify product data management resources, such as the construct specified in annex E of
ISO 10303-41. These template structures are semantically incomplete by themselves; they are
designed to be used to specify structurally similar though semantically dissimilar concepts in a
standard and consistent manner. The template entity is completed by an explicit and unique
assignment of semantics in the MIM. The explicit assignments are made between the
management concepts (e.g., approval or organization) and the items that require the management
information. Details on how the new MIM constructs which complete the assignment template
structure are documented in the MIM short listing follow.

Subtypes of interfaced entities may be created for the completion and assignment of generic
concepts. The assignment of a generic concept is the only time that an explicit attribute may be
added to a subtype declared in an MIM schema. In order to assign the generic constructs to the
appropriate entities as defined in the ARM requirements, two constructs are created. The first
construct is a SELECT type. That SELECT type may contain all of those entities or other
SELECT types that may have the concept assigned to it. That SELECT type may also be an
extensible SELECT type. In this case, using AMs extend the SELECT type domain to complete
the entities or SELECT types that may have the concept assigned to it. The second construct is
an entity which is a subtype of the entity in the ISO 10303 integrated resources representing the
generic concept. This entity shall contain a single attribute which references a SET of the
SELECT type that was defined previously. A SET is used here so that all concepts that are the
same are able to be assigned to different instances of entities that share the information. The

subtypes shall be named with the name of the entity from ISO 10303-41 prepended with the
string "applied_", the attribute shall be named "items" and the SELECT type shall be named
based on the entity name from ISO 10303-41. See B.4 for an example.

A mapping specification supporting the concept completion and assignment constructs defined in
the AM shall be included in this clause of the AM.

5.3.4 Constrained generic concepts

Standardized common resource constructs are generic in nature and designed to be shared by
multiple application contexts. Several AMs may require the same generic concept that a resource
construct represents, but each may constrain the generic concepts in order to represent a specific
usage within the AM domain. New MIM constructs may be created (through subtyping) to:

• constrain a generic concept;

• constrain the relationship between generic concepts; or

• create multiple, specialized concepts of the generic concept, through specification of
different constraints representing different usages of the same generic concept under
specific circumstances within the domain of the AM.

Global rules and functions and subtype constraints are allowed in an MIM to constrain generic
concepts. In the case that a constraint in the MIM is the result of a constraint in the ARM that
constrains concepts defined in a used AM, the documentation of the MIM constraint shall
reference the ARM constraint upon which it is based.

Global rules are frequently written to constrain an entity from being independently
instantiated.When an application requirement results in a constraint on every use of an interfaced
entity or attribute of an interfaced entity, a global rule is specified. Global rules are also used to
specify constraints on the relationships among two or more entities. Constraints may be specified
as global rules to serve four specific functions and as subtype constraints to serve one function.
These functions are described in the following subclauses.

5.3.4.1 Global rules as supertype constraints and using subtype constraints

A supertype constraint is one that constrains the relationships among interfaced entities in the
same subtype/supertype tree. These constraints are in addition to any constraints applied through
the specification of the interface statements (i.e., dependence). There are many uses for this type
of constraint; only two uses are described here.

A supertype constraint, for example, may make the instantiation of a subtype mandatory for a
particular supertype entity. The requirement for a rule of this type will arise when an entity is 1)
explicitly interfaced to be subtyped, or 2) is implicitly interfaced via attribute reference as well as
subtype reference. If the ARM requirement is only for the new subtype entity, then a rule is
required to prohibit the instantiation of the interfaced supertype entity. See annex C for a
template for a mandatory subtype global rule.

Rules for constraining supertype relationships may also be used to limit the combinations of
subtypes of a single supertype entity in order to define the appropriate set of complex entity data

types allowed satisfy the requirements specified in the ARM.

In the cases where any constraint may be written using an EXPRESS subtype constraint instead
of a global rule, a subtype constraint may be specified for the that purpose.

5.3.4.2 Cardinality constraint

A cardinality constraint is one that constrains the relationship between two interfaced entities by
limiting the number of instances of one entity type that may be related to instances of the other.
Explicit cardinality is specified in the referential direction of the relationship (i.e., from the entity
with the attribute to the entity that is the data type of that attribute). When an INVERSE attribute
does not exist to constrain the cardinality of the referenced entity, the cardinality defined is, by
default, zero, one or many. These cardinalities may be constrained using a cardinality constraint.
See annex C for a template for a global rule which constrains cardinalities of referenced entities.

The integrated resources, for example, always model the existence dependency of one entity with
respect to another by the referential direction of the relationship. That is, the dependent entity
always references the independent entity so that an instance of the dependent entity requires the
existence of an instance of the independent entity. In the ARM, two entities might be
interdependent. That is, each entity requires a single instance of the other in order to model a
complete concept. In this case, a cardinality constraint would be necessary to constrain the
inverse cardinality to be exactly one rather than the default zero, one or many.

5.3.4.3 Referential integrity constraint

Global rules can be used to specify referential integrity constraints as defined in 5.3.4.2.1. This
type of constraint is one that constrains valid reference paths for all instances of an interfaced
entity. The paths that are constrained may be combinatorial in nature. These combinatorial
constraints are ones where a single entity may be required to be instantiated through two or more
distinct paths in order to completely satisfy an ARM requirement. This type of constraint may
also constrain an attribute value that is reached via a single reference path for all instances of a
referencing entity.

5.3.4.4 Attribute domain constraint

An attribute domain constraint is one which constrains the value of an attribute in instances of a
particular entity. This constraint is used to constrain the values, for example, of an attribute of
type STRING in an interfaced entity to correspond to values of an enumeration as defined in
ARM requirements. In the design of the integrated resources, the use of enumerated types was
limited to preserve the generic nature of the integrated resources. Instead of referencing
enumerated types, integrated resource entity attributes reference base types or defined types
where the underlying type is a base type (i.e., INTEGER, STRING etc.). When an application
context as defined in an ARM is used to determine requirements for specific structures,
enumerations are considered specific requirements. A domain constraint specifies the legal
values of the simple data types that correspond to the enumeration values and the standard
interpretation of those values for that application context. See annex C for a template for a global
rule which restricts attribute values.

Another use of an attribute domain constraint is to place limits on the values of attributes of an

entity. For example, if an entity has an attribute that is an INTEGER, and an ARM specifies a
requirement that the INTEGER value must be greater than 1, the domain constraint is specified
on the entity that contains that attribute to declare that constraint.

5.3.5 Use of functions

In the specification of rules, EXPRESS functions may be used in order to make the specification
of the rule simpler. Due to the recursive nature of many of the references in the common
resources, a constraint may need to be defined recursively. Additionally, many rules may need to
use the iterative and logical capabilities of the executable statements defined in EXPRESS in
order to specify complex constraints on the interactions among different entities. This type of
complex interaction will usually require that a function be defined in order to support the
specification of a constraint. In these cases, new functions may be defined to be used by a rule.

5.3.6 Completed short form schema

Global rules may appear in the MIM to constrain an entity, relationship or attribute.

Constructs from the integrated resources are pruned in the MIM (see 5.1.2 of Guidelines for
application interpreted model development). There may be subtypes and items of select lists that
appear in the integrated resources that are not imported into the AM. Constructs are eliminated
from the subtype tree or select list through the use of the implicit interface rules of ISO 10303-
11. References to eliminated constructs are outside the scope of the MIM.

5.3.7 EXPRESS usage guidelines for MIMs

This clause describes the use of the EXPRESS language in an MIM EXPRESS short listing, and
provides additional details that describe the semantics of a particular usage of EXPRESS.

5.3.7.1 Schema interface

An MIM establishes a formal relationship to the integrated resources and application modules by
containing the EXPRESS USE FROM keyword. USE FROM is the only interface mechanism
that may be employed in an MIM.

The USE FROM keyword interfaces named data types and entire schemas into another schema.
In an MIM EXPRESS short form, if the interface is to a construct defined in the integrated
resources, the desired construct is individually named in the interface specification for the
schema in which the construct is defined. If all constructs from an integrated resource schema are
desired, the entire schema may be interfaced by providing only the schema name in the interface
specification. If the interface is to an AM, only the AM schema name is provided. The AM must
be used in its entirety; the use of subsets of an AM is not allowed.

5.3.7.2 Entity type specialization

The requirements for the declaration of unique MIM constructs during the development of the
MIM EXPRESS short listing is defined earlier in this standing document. Entities are created in
the MIM only to achieve one of three objectives: constraint localization, attribute definition
specialization, and concept completion and assignment. Entities used from the Integrated
Resources and from the MIM schemas in other AMs may be subtyped as part of meeting one of

these three objectives. Concept completion and assignment also requires the specification of a
SELECT type. In the development of an MIM, this is the only case where an MIM-specific
defined type is specified.

5.3.7.2.1 Localization of constraints

In an MIM, there may be requirements to specify constraints on an entity that differ depending
on its usage in different structures. This type of constraint is called an entity behavioral
constraint. In order to specify this type of constraint, the entity is interfaced explicitly into the
MIM schema from the integrated resources or included via a USEd AM. There are two methods
for representing the constraint:

• a global rule is defined to constrain attribute values representing the required constraint
from the ARM; or

• a new subtype of the entity is be created to represent the concept for which the constraints
are defined.

Using global rules is the preferred method to consider to represent these constraints. Global rules
that, when pulled into a larger context, may apply to a broader scope than originally intended are
discouraged. Subtyping should be employed when the complete set of subtypes for all possible
domains can be determined.

In addition to constraints on the usage of a particular entity, there may be a need to specify
differing, and often conflicting, constraints on an entity or an entity's attributes depending on its
usage in the reference path of a generic entity interfaced to the MIM. In this case, subtypes of the
referencing entity shall be created in order to establish a context for the constraint and to specify
the constraint on the referenced entity. This type of constraint is called a referential integrity
constraint.

5.3.7.2.2 Specialization of attribute definitions

The creation of subtypes of the interfaced entities from the integrated resources or AMs enables
more specific attribute definitions to be given when the generic definition is not sufficient to
satisfy the ARM requirements. This situation most often occurs when there is an ARM
requirement for relationships defined between two entities that play specific roles within those
relationships. There are two practices which may be used in this case, depending on the
application requirements.

The first practice concerns attribute naming. If there is a requirement that an attribute have a
specific name based on the ARM, then a subtype entity is created in the MIM and a derived
attribute is specified which names the attribute inherited from the supertype entity. Derived
attributes may be used, for example, to specialize the generic product_definition_relationship
entity when an application requirement states that the relationship is prioritized: one
product_definition is first priority and the other is second priority. The attributes names
first_priority and second_priority have a very specific application meaning and the development
team has defined those roles specifically within the ARM requirements. The MIM would then
contain an entity such as:

*)

ENTITY priority_product_definition_relationship;
SUBTYPE OF (product_definition_relationship);
DERIVE
first_priority : product_definition :=
SELF\product_definition_relationship.relating_product_definition;
second_priority : product_definition :=
SELF\product_definition_relationship.related_product_definition;
END_ENTITY;

(*

The second practice is used if there is no application requirement for a specific attribute name. If
the definition of an inherited attribute must be specialized in the MIM and there is no application
requirement for an attribute name to be given, a subtype may be created and additional textual
definitions are created in the MIM for inherited attributes. This entity would then be used to
represent the semantics given in the textual definitions of the inherited attributes.

An example of this second practice may be found in ISO 10303-203. The entity
supplied_part_relationship is declared as a subtype of the generic
product_definition_relationship entity. Since there are no application requirements for specific
attribute names, the definitions are refined to say that the related_product_definition is to be
interpreted as that product_definition that is supplied by an outside organization and the
relating_product_definition is the product_definition that is internal to the owning organization.

5.3.8 Documenting new MIM constructs

The AM document must include complete definitions of all new MIM constructs found in the
MIM EXPRESS short listing. It may also include textual definitions and descriptions from the
interfaced resource constructs that have been further specialized to suit the established
application context of the AM. Guidance for developing and formatting these definitions is found
in Supplementary directives for the drafting and presentation of ISO 10303.

5.4 Mapping specification

The mapping specification is a pivotal component of an AM. The mapping specification
specifies the relationship between the information requirements as specified in the ARM and the
resource constructs that satisfy those requirements in the module interpreted model. Unless
otherwise specified in this standing document, the mapping specification for an AM shall follow
the Guidelines for the development of mapping specifications, 2nd edition.

Exceptions to the mapping specification guidelines include the following.

• In all cases where the guideline uses or specifies the term application interpreted model
or AIM, that term is to be replaced by module interpreted model or MIM.

• As AM ARMs are written using EXPRESS, the concept of application assertion is not
applicable. These are specified in the EXPRESS structure rather than separately from the
application object.

• In all cases where options are allowed to be specified in the mapping specification that
may be numbered, they shall be numbered. This allows options to be referenced by
number in using application modules.

• An application module may be the source of an element in the mapping specification.

Several concepts are available to enable generic and abstract concepts to be defined in one AM
but completed in a using AM.

• Incomplete or uninstantiable ARM concepts shall appear in the mapping specification but
need not be fully mapped in the mapping specification. In the case that the concept is an
abstract supertype in the ARM with the intent that using AMs will define subtypes, text
may be specified stating that the mapping appears in using AMs.

• All concepts that appear in the mapping specification need not appear in the MIM. This
enables the constraint on a mapping to be specified in one AM while allowing the MIM
object into which something is mapped to appear in the MIM of a using AM.

• The mapping specification in a using AM may eliminate one or more of the options
found in a supertype declared in a required AM. This is specified in text referencing the
mapping in the used AM and stating the number of the mapping that is eliminated. An
example may be added that is the referenced mapping specification repeated in the AM
with the eliminated option omitted.

5.5 Short names table

Short names are required for each entity in the MIM EXPRESS short form schema. An
explanation of short names is found in Guidelines for the development and approval of STEP
application protocols.

Annex A

Conformance testing concepts for application modules

The application concepts defined in application modules are of varying levels of detail, scope,
semantic completeness and applicability to specific contexts. For these reasons not all
application modules have the same requirements on conformance testing. The following
guidelines and principles shall be used to determine the required testing related developments for
application modules.

• all application modules shall have associated ISO 10303-21 files covering every
application object defined in the application module which maps to a construct in the
MIM;

• application modules that are the data specification for an application protocol shall fall
under the same requirements for providing conformance testing supporting documents as
a non-modularized AP.

Annex B

Examples

This annex contains examples of a UoF, application objects, and relationship attributes that
appear in the example mapping specification.

B.1 Example UoF, application objects, and relationship attributes that appear
in the example mapping specification

4.1 Units of Functionality

Product_identification specifies things organizations have identified for some purpose. This UoF
consists of the following application objects:

• product;

• product_category;

• organization.

4.2 ARM entity definitions

(*

4.2.1 product application object

A product is something an organization has identified for some purpose.

Products are uniquely identified by product.id, organization.id and one or more
product_category.name.

The mechanism for guaranteeing the uniqueness of organization id is outside the scope of ISO
10303.

The same organization that assigns the product id also categorizes the product in the context of
uniquely identifying the product.

EXPRESS Specification

*)
ENTITY product;
id : label;
name : text;
categories : SET[1:?] product_category;
id_assigning_organization : organization;
WHERE

wr1: id_assigning_organization :=: categories[1].name_assigning_organization;
END_ENTITY;

(*

id : the identification of the product assigned by the organization
name : words by which the product is known.
categories : the categories by which the product is classified or which specify the type of the
product
id_assigning_organization : the organization that assigned the product its id
*)

(*

4.2.2 product_category application object

A product_category is a possible classification for products by an organization.

A product_category is uniquely identified by its name within the organization.

The same organization that assigns the product.id also categorizes the product in the context of
uniquely identifying a product.

EXPRESS Specification

*)
ENTITY product_category;
name : label;
name_assigning_organization : organization;
END_ENTITY;
(*

name : the identification of the product_category assigned by the organization
name_assigning_organization : the organization that assigned the product_category its name
*)

(*

4.2.3 organization application object

An organization is a group of people involved in a particular business process. An organization
is not an ad hoc organization, such as project teams, meetings or informal groups.

The mechanism for guaranteeing the uniqueness of organization id is outside the scope of ISO
10303.

EXPRESS Specification

*)
ENTITY organization;
id : label;
name : text;
address : OPTIONAL text;
UNIQUE
organizations_are_unique : id;
END_ENTITY;
(*

id : the unique identification of the organization
name : the name of the organization
address : the optional address of the organization which may be used to indicate an item delivery
address, a postal address, or a physical location visitor address.
*)

B.2 Example mapping specifications

This annex contains an example mapping specification.

Application element MIM element Source Rules Reference Path
PRODUCT product 41 X X
id product.id X X X
name product.name X X X

categories
#1 relationship to
Product_category

PATH X X

product <-
product_related_product_category.products[i]
product_related_product_category <=
product_category

id_assigning_organization
#2 relationship to Organization

PATH X X

product <-
(applied_organization_assignment.items[i]
applied_organization_assignment <=
organization_assignment
{organization_assignment.role ->
organization_role
organization_role.name = 'id owner'}
organization_assignment.assigned_organization->
organization)
(applied_person_and_organization_assignment.items[i]
applied_person_and_organization_assignment <=
person_and_organization_assignment
{ person_and_organization_assignment.role ->
person_and_organization_role
person_and_organization_role.name = 'id owner'}
person_and_organization_assignment.assigned_person_and_organization->
person_and_organization
person_and_organization.the_organization->
organization)

PRODUCT_CATEGORY product_category 41 X X
name product_category.name X X X

id_assigning_organization
#1 relationship to Organization

PATH X X

product_category =>
product_related_product_category
product_related_product_category.products[i] ->
product <-

(applied_organization_assignment.items[i]
applied_organization_assignment <=
organization_assignment
{organization_assignment.role ->
organization_role
organization_role.name = 'id owner'}
organization_assignment.assigned_organization->
organization)
(applied_person_and_organization_assignment.items[i]
applied_person_and_organization_assignment <=
person_and_organization_assignment
person_and_organization_assignment.assigned_person_and_organization->
person_and_organization
person_and_organization.the_organization->
organization)

ORGANIZATION organization 41 X X
id organization.id X X X
name organization.name X X X

address organizational_address 41 X
organization <-
organizational_address.organizations[i]
organizational_address

B.3 Example scope refinement

There is a requirement for an AP team to be able to use a portion of an existing AM whose scope
is too large. The concept of “scope refinement” is intended to address this requirement. The
process is defined as:

• Break the existing AM into two or more smaller AMs;

• Exactly the same scope for the combination of the smaller AMs as for the existing AM;

• No change to the Application objects or mappings allowed;

• Need to allow APs using the existing AM to be unaffected.

The following application objects define the concept of a product and a product_version in a
single product_id AM. The pdm_ap then uses this product_id AM in its entirety.

*)

SCHEMA product_id_arm;

ENTITY product;
id : label;
END_ENTITY;

ENTITY product_version;
of_product : product;
END_ENTITY;

END_SCHEMA;

SCHEMA pdm_ap_arm;

USE FROM product_id_arm;

END_SCHEMA;

(*

After the product_id AM and the pdm_ap AP have been developed, the process_plant AP
begins development and has the requirement for a product without an associated
product_version. Thus, the process_plant AP team needs to refine the scope of the product_id
AM creating the product_only and product_version AMs.

*)

SCHEMA product_only_arm;

ENTITY product;
id : label;
END_ENTITY;

END_SCHEMA;

SCHEMA product_version_arm;

USE FROM product_only_arm;

ENTITY product_version;
of_product : product;
END_ENTITY;

END_SCHEMA;

SCHEMA plant_ap_arm;

USE FROM product_only_arm;

END_SCHEMA;

(*

Finally, the product_id AM needs to be revised to use these two new AMs. The pdm_ap need
not be revised as the scope refinement maintains the original scope of the product_id AM.

*)

SCHEMA product_id_arm;

USE FROM product_only_arm;

USE FROM product_version_arm;

END_SCHEMA;

B.4 Example management resource completion

The following example illustrates the use of the concept completion and assignment technique in
an AIM. The items attribute of the new SUBTYPE applied_date_assignment that references the
new SELECT type date_assigned_items illustrates the only case where it is allowable to add an
attribute in a subtype.

*)

SCHEMA resource_example_schema;

REFERENCE FROM date_schema (date, date_role);

ENTITY date_assignment;
ABSTRACT SUPERTYPE;
role : date_role;
assigned_date : date;
END_ENTITY

END_SCHEMA; -- resource_example_schema

SCHEMA concept_completion_example_schema;

USE FROM partial_product_definition_schema
(product,
product_definition_formation);

USE FROM resource_example_schema (date_assignment);

TYPE date_assigned_items = SELECT -- SELECT type definition
(product,
product_definition_formation);
END_TYPE;

ENTITY applied_date_assignment; -- ENTITY subtype definition
SUBTYPE OF (date_assignment);
items : SET [1:?] OF date_assigned_items;
END_ENTITY;

END_SCHEMA; -- concept_completion_example_schema

(*

The new subtype entity declaration may also be combined with the localization of constraints
practice which would enable the specification of either behavioral or referential integrity
constraints in the WHERE clause of the entity. An example of this is provided in the following
example schema; date assignments are coordinated with the value of the role attribute. The
function date_time_correlation says, for example, that a date with the role of "creation date"
must be assigned to a product_definition entity. Again, the addition of attributes in an newly
defined subtype is allowed only for the assignment template structures in the STEP integrated
resources; these ABSTRACT SUPERTYPE entities are incomplete by definition and must be
completed in the using schema.

*)

SCHEMA role_correlation_example;

TYPE date_and_time_assigned_items = SELECT
(product_definition,
change_request,
start_request,
change,
start_work,
approval_person_organization,
contract,
security_classification,
certification);
END_TYPE; -- date_time_item

ENTITY applied_date_and_time_assignment
SUBTYPE OF (date_and_time_assignment);
items : SET [1:?] OF date_and_time_assigned_items;
WHERE
WR1: date_time_correlation(SELF);
END_ENTITY; -- applied_date_and_time_assignment

ENTITY date_and_time;
date_component : date;
time_component : local_time;
END_ENTITY; -- date_and_time

ENTITY date_and_time_assignment
ABSTRACT SUPERTYPE;
assigned_date_and_time : date_and_time;
role : date_time_role;
END_ENTITY; -- date_and_time_assignment

ENTITY date_time_role;
name : label;
END_ENTITY; -- date_time_role

FUNCTION date_time_correlation
(e : applied_date_and_time_assignment) : BOOLEAN;

LOCAL
dt_role : STRING;
END_LOCAL;

dt_role := e\applied_date_and_time_assignment.role.name;

CASE dt_role OF

'creation_date' : IF SIZEOF (e.items) <>

 SIZEOF (QUERY (x <* e.items |'ROLE_CORRELATION_EXAMPLE.' +
'PRODUCT_DEFINITION' IN TYPEOF (x)))

 THEN RETURN(FALSE);

 END_IF;

'request_date' : IF SIZEOF (e.items) <>
SIZEOF (QUERY (x <* e.items |
SIZEOF (
['ROLE_CORRELATION_EXAMPLE.CHANGE_REQUEST' +
'ROLE_CORRELATION_EXAMPLE.START_REQUEST'] *
TYPEOF (x)) = 1))

THEN RETURN(FALSE);

END_IF;

'release_date' : IF SIZEOF (e.items) <>
SIZEOF (QUERY (x <* e.items |
SIZEOF (
['ROLE_CORRELATION_EXAMPLE.CHANGE' +
'ROLE_CORRELATION_EXAMPLE.START_WORK'] *
TYPEOF (x)) = 1))

THEN RETURN(FALSE);

END_IF;

'start_date' : IF SIZEOF (e.items) <>
SIZEOF (QUERY (x <* e.items |

SIZEOF (
['CONFIG_CONTROL_DESIGN.CHANGE' +
'ROLE_CORRELATION_EXAMPLE.START_WORK'] *
TYPEOF (x)) = 1))

THEN RETURN(FALSE);

END_IF;

'sign_off_date' : IF SIZEOF (e.items) <>
SIZEOF (QUERY (x <* e.items |
'ROLE_CORRELATION_EXAMPLE.' +
'APPROVAL_PERSON_ORGANIZATION'
IN TYPEOF (x)))

THEN RETURN(FALSE);

END_IF;

'contract_date' : IF SIZEOF (e.items) <>
SIZEOF (QUERY (x <* e.items |
'ROLE_CORRELATION_EXAMPLE.CONTRACT'
IN TYPEOF (x)))

THEN RETURN(FALSE);

END_IF;

'certification_date' : IF SIZEOF (e.items) <>
SIZEOF (QUERY (x <* e.items |
'ROLE_CORRELATION_EXAMPLE.CERTIFICATION'
IN TYPEOF (x)))

THEN RETURN(FALSE);

END_IF;

'classification_date' : IF SIZEOF (e.items) <>
SIZEOF (QUERY (x <* e.items |
'ROLE_CORRELATION_EXAMPLE.' +
'SECURITY_CLASSIFICATION'

IN TYPEOF (x)))

THEN RETURN(FALSE);

END_IF;

'declassification_date' : IF SIZEOF (e.items) <>
SIZEOF (QUERY (x <* e.items |
'ROLE_CORRELATION_EXAMPLE.' +
'SECURITY_CLASSIFICATION'
IN TYPEOF (x)))

THEN RETURN(FALSE);
END_IF;

OTHERWISE : RETURN(TRUE);
END_CASE;

RETURN (TRUE);
END_FUNCTION; -- date_time_correlation

END_SCHEMA; -- role_correlation_example

(*

B.5 Entity behavioral constraints

An example of the use of entity behavioral constraints consists of an application requirement
defined in an ARM for two different types of the product_definition entity. One type of
product_definition entity is always a component in an assembly and another type of
product_definition is never a component in an assembly. This is a behavioral constraint on the
product_definition that could be implemented with two subtypes or with constrained attribute
values. In the case where subtypes are created, the first subtype could contain a constraint that
says it must always be used in the product_definition_relationship entity as the
related_product_definition. The second subtype of product_definition could contain a constraint
specifying that it shall never be used in the product_definition_relationship entity. In the case
where attribute values are constrained, a global rule could be written specifying that when the
description attribute of product_definition has a value of component, the product_definition must
always be used in a product_definition relationship as the related_product_definition.

In the case that subtypes are created, entity behavioral constraints are specified as local rules and
the EXPRESS USEDIN function is employed to gain access to the other entities that reference
the particular entity which needs to be constrained in the MIM. Each subtype definition allows
the MIM schema to specify different uses of the generic concept (as defined in the STEP
integrated resources) for different purposes (as defined in an ARM).

B.6 Referential integrity constraints

For example, referential integrity constraints would be used to support an application
requirement for two separate uses of the polyline entity defined in ISO 10303-42. Let us assume
for the case of this example, that the requirements for the usage of the polyline are differentiated
by the fact that there are two different mathematical methods for describing the shape of
something. One representation requires polylines to contain exactly two points for the
representation of line segments. The other representation has a requirement for polylines to
contain more than two points and line segments defined by trimmed curves with underlying lines
as the basis curves. This example will use the entities defined in ISO 10303-41, ISO 10303-42
and ISO 10303-43.

Since the polyline is constrained differently based on its usage in the particular method, if both
methods are required in a single AP, the constraints on use of the polyline entity must be
localized. Constraint localization is accomplished by defining an entity in the MIM schema that
is a subtype of a resource entity to define a scope for the constraints. To localize the constraints
in this example, two subtypes of the shape_representation entity from ISO 10303-41 need to be
created where the applicable constraints for the polyline are specified in the two different
representation subtypes. One of them is to create a scope for the mathematical method in which
polylines are defined only by two points; and the other is to create a scope for the mathematical
method in which polylines are defined by more than two points. The entity definition for the

subtypes shall contain an explanation of the purpose of the constraints. The polyline entity is
referenced by an attribute of the geometric_set entity, which is, in turn, referenced by the
representation structure from ISO 10303-43. The constraints on polyline will be specified as
referential integrity constraints on the representation_items (inherited by shape_representation
entity from the representation entity in ISO 10303-43) that are of type "polyline" within the
contents set of the geometric_set that is in the set of items in the representation entity. In one
shape_representation subtype, the size of the set of points that define the polyline is constrained
to two elements, and in the other shape_representation subtype the size of the set of points that
define the polyline is constrained to be more than two. Each MIM entity (the created subtypes of
the shape_representation entity), therefore, defines a context within which conflicting constraints
on the polyline may exist within the MIM schema.

Referential integrity constraints are written as local rules that use the EXPRESS TYPEOF
function to identify the appropriate traversal through the reference path in specifying the
constraint on the subtype and gain access to the attributes that ultimately need to be constrained.
In the example, each subtype allows different constraints to be placed on a single attribute of a
single entity depending on the reference path by which those attributes are reached.

